ncepts of Forest Habitat Restoration in the Cedar River Watersh

Forest Succession

Gaps:

☐ Simulate "shifting mosaic" dynamic of oldgrowth stage

Increase Structural Complexity

- ☐ Varied tree density at stand scale
- Vary gap sizes
- Encourage epicormic branching

Increase Species Diversity

☐ Increase sun energy to forest floor (stimulate growth of understory, benefit shade-intolerant species)

Snags:

- Increase Structural Complexity
 - ☐ Increase short-term numbers through active creation
 - Shorten time to naturally created large snags by increasing/maintaining tree growth and desired tree density

Restoration Thinning:

- Forest Succession

 Maintain/increase tree growth and vigor
- Increase Structural Complexity
 - Variable density tree thinning
 - Vary prescription across project area
 - Vary treatment along streams
- Increase Species Diversity
 - Maintain less abundant species

e Selection and Prioritization:

- **Primary Forest Stand Criteria**
 - ☐ Provide stand-level forest characteristics that likely respond to thinning overstory trees (e.g., tree density, tree diameter, tree age, canopy closure)
 - Provide an opportunity to try various restoration prescriptions

Primary Landscape Criteria

- Lies within a mile of remnant old-growth forest improving the forest habitat connectivity within the watershed sub-basin
- Begin an active effort to link old-growth forest habitat in the eastern and western portions of the watershed

Size of Treatment:

- Landscape Effect
- ☐ Wildlife benefit
 ☐ Sub-basin restoration
- _ cub-busin restoration
- Planning Efficiency

Downed Wood:

- Increase Structural Complexity
 - ☐ Increase short-term numbers through
 - Shorten time to naturally created large downed wood by increasing/maintaining tree growth and desired tree density

Upland Planting:

- **Increase Species Diversity**
 - ☐ Plant less abundant species that con ecosystem processes (e.g., tree, shru cryptogams, etc)
- Increase Structural Complexity
 - Encourage development of understorand canopy layering

Because of Uncertainty We Will:

- Increase Heterogeneity and Variability
 - ☐ Stand-level
 - Landscape-level

Try Different Strategies

Remain Humble and Conservative

Institute Benchmarking

- With other CRW-HCP projects
- With other forest restoration research

Ecological Thinning:

- Forest Succession
 - ☐ Maintain/increase tree growth and vigor
- **Increase Structural Complexity**
 - ☐ Variable density tree thinning
 - □ Vary prescription across project area
 - ☐ Encourage epicormic branching
 - ☐ Vary treatment along streams

Increase Species Diversity

- Maintain less abundant species
- Increase sun energy to forest floor (stimulate growth of understory)

Skips and Leave Areas:

- Increase Structural Complexity
 - Maintained and varied tree density
 Vary prescription across project area
- wonitoring
- Comparison controls to help
- understand change

